Increased O-GlcNAc levels during reperfusion lead to improved functional recovery and reduced calpain proteolysis.

نویسندگان

  • Jia Liu
  • Richard B Marchase
  • John C Chatham
چکیده

We have previously shown that preischemic treatment with glucosamine improved cardiac functional recovery following ischemia-reperfusion, and this was mediated, at least in part, via enhanced flux through the hexosamine biosynthesis pathway and subsequently elevated O-linked N-acetylglucosamine (O-GlcNAc) protein levels. However, preischemic treatment is typically impractical in a clinical setting; therefore, the goal of this study was to investigate whether increasing protein O-GlcNAc levels only during reperfusion also improved recovery. Isolated perfused rat hearts were subjected to 20 min of global, no-flow ischemia followed by 60 min of reperfusion. Administration of glucosamine (10 mM) or an inhibitor of O-GlcNAcase, O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc; 200 microM), during the first 20 min of reperfusion significantly improved cardiac functional recovery and reduced troponin release during reperfusion compared with untreated control. Both interventions also significantly increased the levels of protein O-GlcNAc and ATP levels. We also found that both glucosamine and PUGNAc attenuated calpain-mediated proteolysis of alpha-fodrin as well as Ca(2+)/calmodulin-dependent protein kinase II during reperfusion. Thus two independent strategies for increasing protein O-GlcNAc levels in the heart during reperfusion significantly improved recovery, and this was correlated with attenuation of calcium-mediated proteolysis. These data provide further support for the concept that increasing cardiac O-GlcNAc levels may be a clinically relevant cardioprotective strategy and suggest that this protection could be due, at least in part, to inhibition of calcium-mediated stress responses.

منابع مشابه

Delayed recovery of intracellular acidosis during reperfusion prevents calpain activation and determines protection in postconditioned myocardium.

AIMS Indirect data suggest that delayed recovery of intracellular pH (pHi) during reperfusion is involved in postconditioning protection, and calpain activity has been shown to be pH-dependent. We sought to characterize the effect of ischaemic postconditioning on pHi recovery during reperfusion and on calpain-dependent proteolysis, an important mechanism of myocardial reperfusion injury. METH...

متن کامل

Glucosamine protects neonatal cardiomyocytes from ischemia-reperfusion injury via increased protein-associated O-GlcNAc.

Increased levels of protein O-linked N-acetylglucosamine (O-GlcNAc) have been shown to increase cell survival following stress. Therefore, the goal of this study was to determine whether in isolated neonatal rat ventricular myocytes (NRVMs) an increase in protein O-GlcNAcylation resulted in improved survival and viability following ischemia-reperfusion (I/R). NRVMs were exposed to 4 h of ischem...

متن کامل

Glucosamine cardioprotection in perfused rat hearts associated with increased O-linked N-acetylglucosamine protein modification and altered p38 activation.

We have shown that, in the perfused heart, glucosamine improved functional recovery following ischemia and that this appeared to be mediated via an increase in O-linked N-acetylglucosamine (O-GlcNAc) levels on nucleocytoplasmic proteins. Several kinase pathways, specifically Akt and the mitogen-activated protein kinases (MAPKs) p38 and ERK1/2, which have been implicated in ischemic cardioprotec...

متن کامل

Effects of hypoglycemia on myocardial susceptibility to ischemia–reperfusion injury and preconditioning in hearts from rats with and without type 2 diabetes

BACKGROUND Hypoglycemia is associated with increased mortality rate in patients with diabetes. The underlying mechanisms may involve reduced myocardial tolerance to ischemia and reperfusion (IR) or reduced capacity for ischemic preconditioning (IPC). As IPC is associated with increased myocardial glucose uptake (MGU) during reperfusion, cardioprotection is linked to glucose metabolism possibly ...

متن کامل

Ischemic preconditioning prevents calpain-mediated impairment of Na+/K+-ATPase activity during early reperfusion.

OBJECTIVES We previously demonstrated that ischemic preconditioning (IPC) attenuates calpain activation during reperfusion. Herein, we tested the hypothesis that enhancement of Na+/K+-ATPase activity during early reperfusion as a result of calpain inhibition is involved in the protection afforded by myocardial IPC. METHODS Intracellular Na+ concentration ([Na+]i) measured using 23Na-magnetic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 293 3  شماره 

صفحات  -

تاریخ انتشار 2007